Nanoscale mechanical contacts probed with ultrashort acoustic and thermal waves
نویسندگان
چکیده
منابع مشابه
Nanoscale mechanical contacts mapped by ultrashort time-scale electron transport
Mechanical contacts are crucial to systems in engineering, electronics and biology. The microscopic nature of the contacting surfaces determines how they mesh on the nanoscale. There is thus much interest in methods that can map the actual area of two surfaces in contact--the real contact area--during the loading or unloading phases. We address this problem using an ultrafast optical technique ...
متن کاملThermal Transport Mechanisms at Nanoscale Point Contacts
We have experimentally investigated the heat transfer mechanisms at a 90610 nm diameter point contact between a sample and a probe tip of a scanning thermal microscope (SThM). For large heated regions on the sample, air conduction is the dominant tipsample heat transfer mechanism. For micro/nano devices with a submicron localized heated region, the air conduction contribution decreases, whereas...
متن کاملModulational instability of dust ion acoustic waves in astrophysical dusty plasmas with non thermal electrons
Propagation of dust ion acoustic waves in plasmas composed of nonthermal distributed electrons and stationary dust particles is investigated. Nonlinear Schrdinger equation is derived to describe small amplitude waves, using the reduction perturbation technique. Modulation instability of dust ion acoustic waves is analysed for this system. Parametric investigation indicates that growth rate of...
متن کاملElectron acoustic solitary waves with non-thermal distribution of electrons
Electron-acoustic solitary waves are studied in an unmagnetized plasma consisting of non-thermally distributed electrons, fluid cold electrons and ions. The Sagdeev pseudo-potential technique is used to carry out the analysis. The presence of non-thermal electrons modifies the parametric region where electron acoustic solitons can exist. For parameters representative of auroral zone field lines...
متن کاملFemtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons.
Fundamental interactions induced by lattice vibrations on ultrafast time scales have become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the terahertz-frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here we report on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2009
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.80.235409